Abs	Handelsblatt (27.8.2008)	ÖKO-Test (5 / 2009)	Abs
	Sonnenenergie auf den Punkt gebracht	Mehr Leistung, niedrigere Kosten	
	(Sascha Rentzing)	(Sascha Rentzing)	
0	Einen höheren Wirkungsgrad und damit eine höhere Stromausbeute verspricht ein Solarmodul, das die Freiburger Firma Concentrix Solar jetzt zur Serienreife gebracht hat. Das Modul besitzt spezielle Linsen, die dünn und leicht sind, und das Sonnenlicht auf einen kleinen Fleck der Hochleistungssolarzelle konzentrieren.	Bei der Photovoltaik tut sich was: Neue Techniken wandeln Sonnenstrahlen effizienter in Strom oder benötigen weniger vom teuren Silicium. Das ist auch bitter nötig, damit sich die Technologie der Wettbewerbsfähigkeit nähert. Wir stellen die neuen Trends vor.	0
1	Der Solarspezialist, eine Ausgründung des Fraunhofer-Instituts für Solare Energiesysteme (ISE), startet im September mit der industriellen Fertigung seiner hocheffizienten Solarzellen, bei denen Linsen das Sonnenlicht auf einen winzigen Fleck bündeln. Dadurch steigt der Wirkungsgrad auf bis zu 36 Prozent, was abhängig vom Standort Kosteneinsparungen	Wer in jüngster Zeit in den Süden Spaniens gereist ist, dem sind sie beim Landeanflug vielleicht aufgefallen: die tiefblauen Seen, die aus der kargen Landschaft hervorstechen. Allerdings ist es kein Wasser, das da unten in der Sonne schimmert, sondern Millionen Solarzellen. Verschaltet zu Modulen, die sich zu riesigen Solarparks bündeln, wandeln sie	1
	von bis zu 20 Prozent gegenüber bisherigen Solarstrom-Anlagen verspricht.	Sonnen strahlen in Strom für Tausende Haushalte.	
2	Concentrix' Ansatz hat namhafte Investoren überzeugt: Neben der Wagniskapitalgesellschaft Good Energies, die unter anderem bei Zellengigant Q-Cells engagiert ist, beteiligt sich seit März auch der spanische Technologiekonzern Abengoa Solar an dem Unternehmen. Mit dem Beteiligungskapital der Spanier – laut	Unter die starr nach Süden ausgerichteten Paneele mischt sich nun neueste Technik. Die Freiburger Firma Concentrix und der spanische Technologiekonzern Abengoa installieren bei Sevilla bewegliche Solarsysteme, die sich nach dem Lauf der Sonne ausrichten wie Blumen. So wird das Licht besser genutzt. Bis 2013 wollen die Unternehmen in der Region	2
	Concentrix mehreren Mill. Euro – baute die Firma in Freiburg die Fabrik mit einer Produktionskapazität von 25 Megawatt pro Jahr. Dort will sie dieses Jahr zunächst einige wenige Systeme, 2009 dann Konzentratoren mit zehn bis 15 Megawatt-Leistung herstellen.	Anlagen mit 300 Megawatt Gesamtleistung installieren und 150.000 Haushalte mit Strom von der Sonne versorgen. Der Wirkungsgrad wird höher	
3	Die neue Technik lässt die durch hohe Rohstoffkosten belastete Solarindustrie hoffen. Sonnenstrom ist noch immer doppelt so teuer wie konventionelle Energie, weil die Preise für Silizium – Hauptbestandteil der Zellen – unvermindert hoch sind. Um die Wirtschaftlichkeit von Solaranlagen zu verbessern, setzt die Branche auf Material sparende Techniken oder Konzepte mit hohen Wirkungsgraden. Concentrix senkt die Kosten, indem es beide Ansätze in seinen Kraftwerken vereint.	Die neue Technik ist ein weiterer Schritt zur Wettbewerbsfähigkeit der Photovoltaik. Denn nach wie vor ist Solarstrom teurer als konventionelle Energie, weil die Preise für Silicium, Hauptbestandteil der Zellen, unvermindert hoch sind. Um die Wirtschaftlichkeit von Solaranlagen zu verbessern, setzt die Branche auf Konzepte mit hohen Wirkungsgraden oder materialsparende Techniken. Concentrix senkt die Kosten, indem es beide Ansätze in seinen Kraftwerken vereint. Integrierte Linsen bündeln dazu das Licht auf winzige Solarzellen.	3
	"An guten Standorten erzeugen unser Konzentratoren zehn bis 20 Prozent kostengünstiger Strom als herkömmliche Solarsysteme", sagt Concentrix-Chef Hansjörg Lerchenmüller.	"An guten Standorten können die Systeme schon heute kostengünstiger Strom produzieren als herkömmliche Module", sagt Andreas Bett vom Fraunhofer-Institut für Solare Energiesysteme in Freiburg, aus dem Concentrix als Ausgründung hervorgegangen ist.	

Abs	Handelsblatt (27.8.2008)	ÖKO-Test (5 / 2009)	Abs
4	Allerdings ist die Produktion der Anlagen	Doch die Produktion der Konzentratoren ist	4
	schwierig, denn es geht um wenige Millimeter.	aufwendig.	
	Die Freiburger arbeiten mit speziellen Linsen,		
	die dünn und leicht sind, aber dennoch Licht auf		
	ein Fünfhundertstel ihres Durchmessers		
	konzentrieren. So kann das Unternehmen Zellen		
	verwenden, die kleiner sind als ein Fingernagel,		
	und es sich sogar leisten, teure Stapelzellen aus		
	drei übereinander liegenden photoaktiven		
	Schichten einzubauen. Diese nutzen einen		
	großen Teil des Farbspektrums der Sonne und		
	wandeln 36,5 Prozent des Lichts in Elektrizität		
	um. Handelsüblich sind gegenwärtig 15 bis 17		
	Prozent.		
	Damit der Fokus jeder Linse genau auf der	Damit der Fokus jeder Linse auf der jeweiligen	
	jeweiligen Zelle liegt, müssen <mark>diese</mark> mit	Zelle liegt, müssen <mark>beide Bauteile</mark> genau	
	höchstens 25 Mikrometern Abweichung vom	zueinander ausgerichtet sein.	
	Idealwert zueinander ausgerichtet sein.		
5	Präzision ist später auch beim		
	Kraftwerksbetrieb gefragt.		
	Die Linsen funktionieren nur dann richtig, wenn	Und da die Linsen nur bei direkter Einstrahlung	
	die Sonne senkrecht auf sie scheint. Daher	funktionieren, werden sie auf sogenannte	
	werden sie auf sogenannte Trackern moniert,	Tracker, riesige bewegliche Gestelle, montiert,	
	die sie <mark>auf ein Zehntel genau</mark> der Sonne	die sie <mark>exakt</mark> der Sonne nachführen.	
	nachführen.		
6	Hohe Wirkungsgrade rechtfertigen jedoch den	Der Aufwand lohnt sich: Die <mark>Systeme</mark> wandeln	
	großen Aufwand. Unter südlicher Sonne, so	das Licht mit 23 Prozent Wirkungsgrad in Strom	
	zeigen Tests, wandelt die <mark>Technik</mark> 23 Prozent	um. Sie arbeiten damit fast doppelt so effizient	
	des Lichts in Strom um – fast doppelt so viel wie	wie gängige Module, die durchschnittlich 13 bis	
	herkömmliche Systeme. Dieser Wert hat auch	14 Prozent Effizienz erreichen.	
	Partner Abengoa Solar beeindruckt, der die		
	ersten kommerzielle Systeme in Spanien		
	errichten wird: "Wir schätzen die Technik und		
	sind von ihrem Potenzial absolut überzeugt",		
	sagt Abengoa Solar-Chef Santiago Seage. Über		
	weitere Projekte in Südeuropa werde derzeit		
	mit Projektentwicklern und Energieversorgern		
	verhandelt, erklärt Concentix-Chef		
	Lerchenmüller.		
		Die Sonnenfänger werden dünner	
7	Die Freiburger müssen allerdings mit starker	Concentrix hat sich dennoch gegen starke	5
	Konkurrenz rechnen. Weltweit arbeitet über ein	Konkurrenz zu behaupten. Angespornt	
	Dutzend <mark>Firmen</mark> an Techniken, die den	durch die hohe Modulnachfrage sorgen	
	Wirkungsgrad erhöhen. Wobei nicht alle auf	Wissenschaftler und Ingenieure für stetige	
	hohe Konzentration oder Stapelzellen setzen:	Innovationen. Dabei zählen nicht nur hohe	
	Die Stuttgarter Firma Archimedes Solar	Wirkungsgrade. Als vielversprechende	
	beispielsweise nutzt Spiegel, die Licht zweifach	Errungenschaft gelten auch Module, die Licht in	
	auf herkömmliche Siliziumzellen konzentrieren.	hundertmal dünneren Absorberschichten	
	Das spanische Unternehmen Guascor Foton	einfangen als gängige Siliciumzellen. Sie sind	
	verwendet zwar eine komplexe Optik,	nicht so effizient, lassen sich aber günstiger	
	kombiniert sie aber mit einfachen	herstellen: Während bei der klassischen	
	Siliziumzellen.	kristallinen Technik Siliciumblöcke erst	
	Siliziumzenem.	Kinstaninien recinink sinerambioeke erst	
	Sinziumzenen.	aufwendig in Scheiben gesägt werden müssen,	

Abs	Handelsblatt (27.8.2008)	ÖKO-Test (5 / 2009)	Abs
		verarbeitet werden, dampfen die Produzenten	
		von Dünnschichtmodulen die fotoaktiven	
		Schichten nur 0,003 Millimeter dick auf Glas	
		oder Folie auf. Als Absorber dienen Materialien	
		wie nicht kristallines Silicium, Kadmium-Tellurid	
		oder CIS. Die Abkürzung steht für Verbindungen	
		wie Kupfer, Indium sowie Selen oder Schwefel.	
		Die US-Firma First Solar zum Beispiel stellt	
		solche CdTe-Module nach eigenen Angaben für	
		unter einem Euro pro Watt Leistung her. Sie	
		liegt damit weit unter den heute	
		durchschnittlichen Produktions kosten für	
		Solarmodule von zwei Euro. Da die schlanken	
		Stromerzeuger aber leider nur rund zehn	
		Prozent des Sonnenlichts umwandeln,	
		benötigen sie mehr Fläche, um die gleiche	
		Strommenge zu erzeugen wie ihre kristallinen	
		Konkurrenten. Die höheren Installationskosten	
		zehren ihren Produktionskostenvorteil	
		zumindest teilweise wieder auf. Um die	
		Stromausbeute der Dünnschichtpaneele zu	
		erhöhen, arbeiten die Hersteller an besseren	
		Absorberschichten oder verwenden zusätzliche	
		Halbleiter. Die Brandenburger Firma Johanna	
		zum Beispiel produziert Lichtsammler, die aus	
		fünf Halbleitern – Kupfer, Indium, Gallium,	
		Selen und Schwefel – bestehen. Mit so vielen	
		Elementen arbeitet bislang keine andere Firma.	
		Technisch ausgereift, verspricht Johanna,	
		können diese Module Wirkungsgrade von 16	
		Prozent erreichen.	
8	Guascor Foton beteiligt sich wie Concentrix an	Experten schätzen, dass der Marktanteil	6
	einer vom spanischen	der Dünnschicht deutlich wachsen wird. Als	
	Wissenschaftsministerium geförderten	flexible Module, die im Gegensatz zu	
	Großanlage mit drei Megawatt Gesamtleistung	Siliciumpaneelen auch Schwachlicht gut nutzen,	
	in der Region Castilla-La Mancha. Für die	also nicht auf direkte Sonne angewiesen sind,	
	Teilnehmer hat das Projekt große Bedeutung,	lassen sie sich vielseitig einsetzen. Doch	
	da sich hier erstmalig in der Praxis zeigen wird,	verdrängen werden sie die bislang	
	welche Technik die effizienteste und	marktdominierende kristalline Technik wohl	
	verlässlichste ist.	nicht, denn auch sie entwickelt sich rasch: Seit	
		2004 haben die Produzenten laut dem	
		europäischen Photovoltaikindustrie-Verband	
		EPIA den Wirkungsgrad von Siliciumzellen im	
		Durchschnitt um zwei Prozentpunkte erhöht	
		und gleichzeitig ihren Siliciumverbrauch um	
		mehr als ein Viertel gesenkt. Experten erwarten	
		weitere Effizienzgewinne und	
		Materialersparnisse: "Siliciumzellen lassen sich	
		mit relativ geringem Aufwand weiter deutlich	
		verbessern", sagt Jan Schmidt vom Institut für	
		Solarenergieforschung in Hameln.	
		Die Kontakte werden effizienter	
9	Neben der Konzentrator-Konkurrenz muss sich	Großes Potenzial wird zum Beispiel Modulen	7
	Concentrix auch gegen Hersteller anderer	zugesprochen, die mit neuartigen	
L	Tomation addit peperi i lei steller dilderer	1 0 producting and time median agent	Ĭ.

Abs	Handelsblatt (27.8.2008)	ÖKO-Test (5 / 2009)	Abs
	Hocheffizienz-Techniken behaupten. Ein Trend geht zu sogenannten Rückkontaktzellen auf Basis von hochreinem monokristallinen Silizium. Ihre Front ist völlig verschattungsfrei, was Wirkungsgrade über 20 Prozent ermöglicht. Die Technik ist zwar teuer in der Herstellung, doch in sonnenreichen Ländern kann sie diesen Kostennachteil durch gute Erträge mehr als wettmachen.	Rückkontaktzellen bestückt sind. Normalerweise wird die in einer Zelle erzeugte Spannung durch metallene Kontakte auf der Front- und Rückseite abgegriffen. Bei Rückkontaktzellen beenden sich alle Stromanschlüsse auf dem Rücken. Durch diese Veränderungen wird die Front weniger verschattet und die Zellen können komplett rückseitig zu einem Modul verschaltet werden. Das erhöht die Stromausbeute und vereinfacht zugleich die Produktion, was Kosten spart.	
10	Die ISE-Forscher sind trotz des Wettbewerbs davon überzeugt, dass sich die konzentrierende Photovoltaik durchsetzen wird, denn das Wirkungsgradpotenzial der Systeme sei noch längst nicht ausgeschöpft. "Ich halte die Technik neben der bewährten Silizium-Technologie für besonders erfolgversprechend für Länder mit starker Sonneneinstrahlung", sagt Eicke Weber, Leiter des Fraunhofer-ISE. Gerald Siefer, Spezialist für Triplezellen am ISE, hält Zellwirkungsgrade von 45 Prozent für möglich. Das National Renewable Energy Laboratory der USA erzielte bereits 40,8 Prozent. Grund zur Hoffnung für Lerchenmüller. In zwei bis drei Jahren will er Effizienzwerte wie in den Laboren erreichen – und die Konkurrenz so abhängen.	Viele Hersteller, darunter Weltkonzerne wie Kyocera und Sharp in Japan, entwickeln derzeit Fertigungsverfahren für die neue Technik. Bei der deutsch-niederländischen Firma Solland läuft bereits die Testproduktion. Die Spezialisten bohren mit Lasern in jede Zelle 16 kleine Löcher. Durch sie wird die absorbierte Energie auf die Rückseite geleitet, wo alle für den Weitertransport des Solarstroms nötigen Anschlüsse angeordnet sind. Die Zellen werden dann rückseitig auf einer gut leitenden Spezialfolie zu einem Modul verklebt. So müssen sie nicht zeitaufwendig miteinander verlötet werden. Der neue Lichtsammler lasse sich zu gleichen Kosten herstellen wie Sollands bisheriges Standardmodul, arbeite aber deutlich effizienter. "Er erreicht einen Wirkungsgrad von 15 Prozent, während das alte Paneel lediglich auf 13,5 Prozent kommt", erläutert Forschungschef Martin Fleuster. Sollands Kunden sollen vom Fortschritt alsbald profitieren: indem sie für das gleiche Geld mehr Leistung bekommen.	8
		Wer macht das Rennen?	
		Welche Solartechnik künftig den Markt dominieren wird, ist nicht absehbar, da alle großes Entwicklungspotenzial aufweisen. Dünnschichtmodule sind sehr günstig produzierbar, bei der kristallinen Technik und Konzentratorsystemen versprechen vor allem Wirkungsgradsteigerungen weitere Kosten senkungen. Vermutlich wird es ein Nebeneinander der Techniken geben: Billige Dünnschichtmodule werden als Strom erzeugende Fassaden und Fenster in Gebäude integriert, während leistungsstarke Siliciumpaneele auf Einfamilienhäusern arbeiten. Als dritte Kraft könnten sich Konzentratoren etablieren und in südlichen Ländern der Sonne nachjagen. Sie sind, da sie im Verbund mit anderen Kraftwerken auf der freien Fläche zum Einsatz kommen, vor allem für Großinvestoren interessant.	9

Abs	Handelsblatt (27.8.2008)	ÖKO-Test (5 / 2009)	Abs
		Einfamilienhausbesitzer, die Strom vom eigenen	
		Dach ernten wollen, investieren dagegen in	
		kristalline Silicium- oder Dünnschichtmodule.	
		Neuartige Rückkontaktzellen oder CIS-Technik-	
		bestückte Paneele werden bald in großen	
		Mengen auf dem Markt erhältlich sein. Der	
		besseren Effizienz dieser jungen Produkte	
		dürfte jedoch anfangs noch ein vergleichsweise	
		hoher Preis gegenüberstehen. Wenn die neuen	
		Lichtsammler dank Massenfertigung und	
		optimierter Herstellprozesse preiswerter	
		werden, dürfte sich eine Investition in jedem	
		Fall lohnen.	